RAINBOW NOTES and TIPS
Installation notes

Updating to new releases (RC’s) of Rainbow

Just to warn you, upgrading to a new release of Rainbow is definitely not an easy feat. This is mainly due to the ability to create your own theme’s, modules, etc. The best way, that I know of and have been successful with, is to first backup your existing Portal (Entire Directory structure.). Also, it is very important to keep track of any files that you have modified or added to the original version. You will need to make sure that you don’t overwrite these modifications. If you do, you can always go back to your backup version, but that version may not work as expected after the upgrade. Make sure that you keep documentation of changes you have made to the database and website. We are currently keeping those in the PortalChangeManagementRecord.xls file. This allows us to document all changes we have made to the site. There are certain cases where these changes will need to be made again, after a new version of Rainbow is installed. This really comes into play with any customized database objects. I first start with my local machine, once everything is working well on my machine, I then try and update the Development server and the VSS that supports it. I will start off by describing how I was able to upgrade my local version.

Local version

Remember – backup your existing database and local version first (just a simple copy of the website).

The key to upgrading the local version is to first go to VSS and check out the entire website. You need to get the latest version from the rainbow website and unzip it to a new directory. Open up an instance of Windows Explorer and navigate to the directory where the new version is located. Open up a second instance of Windows Explorer and navigate to the directory where your local version resides. You have to meticulously go through each directory and copy all non-customized files from the new RC directory to your local directory. This takes awhile, but you should discover that some of the old directories and old files are deleted (this is why you need a backup. Just in case you delete something inadvertently.) You will also find that there are new files and directories that didn’t exist previously. Since I know which directories and files I have modified, or that have my server or my instance specific information in them, I am able to just copy over all of the other directories (ones that I know I haven’t changed anything) and replace what I currently have. The files that you have modified are a little more difficult. I used a file comparer tool to see how much, if any, had changed in the latest release. If the only differences within the files were the changes that I made, I don’t copy over the new RC version. If there are numerous differences, I copy over the RC version and then use my backup copy to go into the RC version and make the same changes there. All of that said, the easiest way to prevent this problem is to just create a new module directory for any module that you want to alter. For example, if I wanted to modify the Announcements module, I copy the Announcement Module and rename it with a new name (AnnouncementsIDHW). I then go in and alter what I want within this so called NEW module. Once compiled, this module will be available to the site, just as any of the original modules. You should also never need to overwrite your DesktopLayouts or Themes directories. These are under the Design directory. You should have created your own directories for these to begin with. Don’t delete these or you will loose the components that control your sites look and feel.
Once this is done, the fun begins. If we use our existing .csproj and .sln files we have a tremendous amount of work ahead of us. We would have to go into our VS.NET project and update references. We may have to browse and find all of the dll’s that have been added and add references to them. This takes some playing to ensure you have the one’s you need and don’t include the one’s you don’t need. You also have to know what files and directories need to be selected, right-clicked and “Include in project” or “Exclude from project”. If everything isn’t correctly done during these phases, the project may not compile or may error even after successful compilation. This was a real joy to deal with.
Development version

Here is the better way. You could use this for your local version as well. I just wanted to document everything to think about as you troubleshoot your upgrade. First use Visual SourceSafe and check out the entire site. Then you will copy all of the files from the unzip location to your working directory for the Development site. Use the .csproj and .sln files that are a part of the upgrade. The tricky part of doing this is that you must go in and edit these two files to point to the correct WebSite. These, by default, use http://localhost/rainbow. You will need to modify these areas to point to http:/webserver/website. This for my machine is http://localhost/KPRainbow, for the development site it is http://localhost/RainbowDevSite.

You also need to bring in the newest .config file, but be prepared to make modifications for the connectionstring key, web site location(as described directly above), other keys, and any customizations that you had previously made to the .config file. Again, this is why you need to keep a backup of your currently working site. Using a file comparison tool should point out any lines that you have customized in your old .config file.

You can now use explorer to copy any modified modules or files from your backup version of the Development site and paste them into the appropriate working directory. Again this is a little tricky. You might want to do a file compare (if they exist in the latest version of Rainbow) to make sure that you want your existing file or whether you should just alter the new Rainbow version of the file with the same modifications. After making those decisions, copy over the files you want using explorer

You next open the solution in VS.NET. If you have copied files or directories into the working directory as discussed above, you will need to ensure that they are “included” in the project. If they are a white directory or file they are currently “excluded” from the project. To include them in the project you will need to right-click on them and choose “include in project”. After doing this, rebuild the project and ensure that you didn’t cause any other code areas to break. It is best to do this rebuild after each directory or group of files in a single directory that you have just included into the project. This makes it much easier to debug the areas that may be duplicated or have duplicate classes.
After compiling, attempt to run the project and debug as necessary. If you have added modules that do any database modifications, you will need to ensure that their current install.sql scripts will work correctly with the current structure of the Development database. You just have to ensure that you haven’t manually done the modifications that would be attempted by the install script. This script will attempt to run when you do the module installation process. If you don’t need all of the items that the install script does. Copy it and paste it back in the same directory of your module. Then rename the file to installReal.sql. This allows you to have a “true” backup of what would be needed if you had to recover from a totally blank Rainbow database. You should never have to do this unless there is no backup of the Rainbow database (you would lose all user entered data).

The next step would be to go to the Admin area of the site. Click on Admin This and then the Admin All tab. This tab gives you the ability to add new modules to the site. Look at the PortalChangeManagementRecord.xls for in depth details of this process and how to debug any problems with the installation.
Okay, now you have got your site working with the latest version. In our case we altered the Articles module and created a new module called ArticlesSortable. We now want our users who are currently using the Articles module to switch those uses over to the ArticlesSortable module. In order to make this kind of switch, the modules need to be using the same table and all of the required fields of that table. Well, again this is a bit tricky. Once you have installed this new module, you have to go into the rb_GeneralModuleDefinitions table and find the GeneralModDefID value for your module. You then take the value and find it’s corresponding ModuleDefID in the rb_ModuleDefinitions. You then need to find what the ModuleDefID is for the module that your users are currently using. For example: The users were currently using ModuleDefID #10, this was the id for the Articles module. We now want the users to use the ModuleDefID #67, which is the id for the new ArticlesSortable module. Now that we know which ID’s need to be changed, we need to create a sql script that updates the rb_Modules. The script would set the ModuleDefID to #67 where the ModuleDefID has a current value of 10. Create the script, test it and then save it. You will need to provide this script to the DBA that manages the Production database at the time you want to move all of these changes to production. Once all of this is done, do some good thorough testing. If all tests pass, you are ready to prepare for a roll to production.
Move to Production

Once you have done all of your testing and have successfully implemented the new version into the development site, you are ready to roll to production. You will need to notify users that the site will be down for a period of time. You should also create a playscript and get approval from all involved parties as to a date and time of roll out. There is a playscript that I created for our rollout to RC4 that you can utilize as a template.
You should first backup the production directories, backup the production database and prepare to roll the latest code to the Production web site. You can copy over all of the directories, but you will need to verify what needs to be changed in the .config file. These should be the same type of changes you did to the development server’s config file. (you have to make sure it points to the correct URL and database connection string.) You DON’T need to copy the .sln, .suo, .cs, and other specific files. It is actually best to setup a Production deployment directory in sourcesafe. This allows you to get all of your files updated in a directory and then have a versioning process incase you need to rollback.
Once you create this structure you can copy it from the working directory over to the web server. You will need to do some light testing and make sure that the site comes up correctly. Any tabs that utilize modules that could have been affected by your current changes may not work correctly until you install the new modules and run the database modification scripts. You should do those steps in exactly that order. Copy over the site, logon and test, goto admin all tab and add your new modules, have DBA run sql scripts, test, test and test.

Alternative – You can use VSS Copy project to copy out only necessary files to a website. I created a DHWWebPortal website on my local machine and copied to that directory. I then tested the site and discovered that some of the .dll’s were not copied. I needed to manually copy Rewrite.Net.dll, DUEMETRI.Rainbow.Ecommerce.BankGateway.dll, flashwebcontrol.dll, log4net.dll, log4net.xml, MarinaTeq.Rainbow.Zen.dll, Rainbow.ECommerce.dll, Rainbow.Provider.Implementation.dll, RewriteRules.Rainbow.dll, RulesEngine.dll, Design\Themes\Default (entire directory), Images (copy entire directory), BIN (copy entire directory), Ensure that Resources\countries.xml is marked as an Embedded Resource (this is in the properties window) and NOT as content. This is the same for UI\WebControls\client_scripts\confirmDelete.js, it needs to be an Embedded Resource.
(WIN2003 - Network Service)(WIN2K and XP - Aspnet) account needs FULL Control rights to install
You need to give the above account (FULL Control) rights to the directory where you are placing Rainbow. Otherwise the account cannot create some of the sub directories needed. This all happens the first time you hit the Rainbow website you are installing.

After you have setup the portal, I believe you can remove the Modify rights from this account (I did a light test of this in DEV and all functionality seemed to work after removing the “Full Control” and “Modify” settings).

In the ADVANCED area of security this account should have all of the rights listed excluding: Full Control, Traverse Folder, Delete, Change Permissions and Take Ownership. All subdirectories will inherit the settings from this install directory.
(My Rainbow Site Details - For the KPRainbow site that I have created, the userid is admin@kprainbow.com and the password is ‘admin’.)
Rainbow Database needs to exist

In setting up an environment where the web server and database server are separate physical machines, make sure a BLANK RAINBOW database(it can be named whatever you want) exists at the server that the web.config points to. This database is killed and then recreated, but if the database doesn’t exist the web site fails.
Web.Config Modifications
Need to set the servername, database name, etc. to connect to the appropriate server
<add key="ConnectionString" value="server=ServerName;database=DBNAME;uid=Userid;pwd=" />

hwepprod 2a6zjxp5
Changing name to other than Rainbow

If the web directory name is going to be something other than Rainbow, there are some modifications to the VS.NET project in order to get it working within VS.NET.

You need to manually alter any line with //localhost/rainbow to //localhost/yoursitename in the following files:

Web.config

Rainbow.duemetri.net.csproj
Rainbow.duemetri.net.csproj.webinfo

Rainbow.duemetri.sln
Other Important Notes and Tips

Home page must be number 1 in tab order
In moving our Home page to a different level in the tab order, we caused the site to start giving the custom error “Site under maintenance” (The site gives an “Error executing child request for DesktopDefault.aspx”). Once we reset the “Home” tab to have the tab order of 1 and the “Admin This” to be tab order 3, the system began to work again. This can be changed in the rb_Tabs table.

Running under VS 2002 vs. VS 2003

If running under VS 2002, you need to download the MS Mobile Internet Toolkit

http://www.microsoft.com/downloads/details.aspx?FamilyID=ae597f21-b8e4-416e-a28f-b124f41f9768&DisplayLang=en
and install it. You then have to add the reference in your project to System.Web.Mobile in order to get the application to compile without error.

If running under VS 2003, you will have to convert the current project. You will get about 7 warnings at compile time. According to Rainbow Forums, you can ignore these and the application will run. Our experience has been that VS 2003 modifies some files when you open then in the editor. This can cause the file to stop working as expected. Do not open the Tabs.aspx or Tabs.aspx.cs files as they will stop working if you compile after opening them. This isn’t understandable, but it is preventable.

Change Object owner

If the database objects are created with a computername/aspnet owner, any future web site modifications will try and rebuild the database. You can run a script in order to adjust the owner of the objects to be dbo. The script is ChangeObjectOwner.sql. You have to take the results of this script and run them in SQL query analyzer in order to have the ownership changed.

How to find the Rainbow version number:
1) If rainbow is running, install the Rainbow Version module and read what it tells you.
2) Open up rainbowinstalldir/setup/scripts/history.xml in Internet Explorer. Scroll to the bottom of the file and look for the version tag. It will look something like this:
<Version>1.3.0.1760</Version>

Linking to content from multiple Tabs(pages)(using the shortcut module)
You must first decide which Tab will be the HOME location to this module (area of content). You then add the module and its associated content to the selected HOME location Tab. Verify that the Tab is working and the module is displaying as you want it to. (All of the above is just your typical content process)

Once that is done, you go to the Tab (page) in which you want to display this same content. You add the Shortcut module to the area that you wish to display this content. You set the properties of the Shortcut module to the TAB/ModuleName that you created above. The only unusual thing about this process is that you have to do it for EACH module and not just the TAB as a whole.

Using the Language Switcher
This has a few steps, but really isn’t that difficult.
· Start off by going to the Admin this Tab (page). Type in the values of the languages you wish to support in the Language List textbox (e.g. en-US;es-MX). For this discussion, we will use US English and Mexico Spanish.
· Then go and edit the Home Tab (page). In the culture settings at the bottom of the page you will need to put in the English and Spanish for the title of the Tab. (You have to go into every Tab (via the Admin this page) and enter in an English and Spanish title. These values appear in the menus based upon what language you have selected in the Language Switcher

· Next, place the Language Switcher module on the HOME Tab (page) on whatever pane you want to place it in.
· Now edit the Language Switcher module you just added. If you view the Module settings page, you will see a culture listbox under the culture settings block. It should now include Invariant (shows for all languages), English (United States), Spanish (Mexico). Choosing one or more of these languages means that this module will appear on the HOME Tab (page) when the corresponding language is selected in the Language Switcher. This is now how every module in the site will now work.
· If you want a module to display no matter what language a user chooses, you select the Invariant choice for that modules culture setting. If you want the module to only display when the Spanish (Mexico) language is selected in the Language Switcher, you only select Spanish (Mexico) for the module. In other words, if you want an Announcements module to display on your Tab and you want it to render in English and then when Spanish (Mexico) is selected in the Language Switcher, you want it to display in Spanish. You will have to add TWO announcements modules to your Tab. One with content that is in English and the culture set to English (United States) and another module with Spanish content that has the culture set to Spanish (Mexico).
· In the case of the Language Switcher module itself, you want to set its culture to Invariant. This way, the actual Language Switcher will be visible no matter what language a user selects.
After all of these steps are in place you can now switch between languages using the Language Switcher on the Home Tab (page) and see the results throughout the site.

Using the Custom Menu
You can set the site up to utilize a custom menu. You have to first create the menu and place it in a directory (the directory name becomes the menu name). The directory should be created under the DESIGN subdirectory of the website. You will see other menu named directories listed there. It is best to use a menu that is close to the functionality you want, as a template for your new menu. The files that make this menu work are: DesktopDefault.ascx, DesktopFooter.ascx, DesktopPortalBanner.ascx, DesktopThreePanes.ascx, PrintFooter.ascx and PrintHeader.ascx. The key file is the DesktopThreePanes.ascx. This file really controls the creation of the menu. For the Menu we have built for the IDHW portal, there are some issues that haven’t been resolved with it. You can choose the menu at the site level and the menu will function correctly. Currently, there is a bug when you are utilizing this menu and want to maintain the tabs for the site. In order to do any tab maintenance (placing new modules on a tab, renaming tabs or modules, etc..), you have to switch back to one of the default menus to do those tasks. Once those tasks are completed, you can then switch back to using our custom menu. We have researched this and cannot find the area that is causing the tab maintenance to fail.

Flow Control

Flow control can be turned on, but isn’t functioning as expected. We are still working on this area.

Workflow utilizes a couple of enumerations; WorkflowState.cs which specifies what state a document is in (eg. Orginal=0, Working=1, ApprovalRequested=2, Approved=3) and WorkFlowVersion.cs which specifies what area is currently active for this document (eg. Production =1, Staging =2). Both of these reside in the Website\Configuration directory.

rb_Modules has some configuration fields related to workflow. SupportsWorkflow (which is really the setting as to whether workflow is ENABLED or not for that module = 0 denotes No and 1 denotes yes) and WorkflowState which specifies the WorkFlowState as explained above.

ARCHITECTURE
Application_BeginRequest

Every page request begins by firing this event which exists in the Global.asax.cs file. Within this event the code first checks the Database Version by calling the static method DatabaseVersion of the PortalSettings Class. This method will look up the database version in the rb_versions table if the Application[“DatabaseVersion”] variable is null, if so it will store the result in the same. It then does the a similar process for the CodeVersion. It retrieves the version from the Assembly using Reflection. The code then sees if the DatabaseVersion has an older version number than the CodeVersion. If so, it redirects to the Update.aspx page in order to update the database with scripts to bring the database structure in sync with the version of the portal. (These updates will happen with every fresh install of the portal and then only if a new version of the portal is distributed.)

The code then extracts the tabid and alias if they exist within the request.

The domain is then extracted using Request.Url.Host.ToLower().
Code then creates an instance of the PortalSettings class using this domain name.
The constructor of the PortalSettings class sets values for all of the configurations of the portal (out of the database). PortalSettings uses a number of methods to set itself up with all of the configurable attributes of the portal. GetLanguageList is a method that retrieves the languages set using the rb_GetPortalSettingsLangList SPROC. It then uses rb_GetPortalSettings SPROC to return a resultset named result. This resultset provides the portal settings that will be stored in the PortalSettings object which is placed in Context.Items collection of the request. This will be stored under the name “PortalSettings”. This holds the settings for the portal along with the tabs related to the portal and all of their associated property settings.

Application_AuthenticateRequest

This is the next event to occur within the original request. The code extracts the PortalSettings object, stored in the previous event and places the result in a PortalSettings object named portalSettings.
The code verifies that the user has been authenticated or attempts to authenticate the user.

Once authentication is verified, the portal removes any settings related the the “WindowsAdmins” customsetting block of the portalSettings object.

The portal then verified what tabs can be viewed by the authenticated user and then sets up all of the tab details into a collection and all mobile tab details into a collection. These are stored in this.DesktopTabs and this.MobileTabs respectively. (“this” being the instance of the PortalSettings object)
The process continues as the nextresult provides all of the ModuleSettings associated with the portal.

The code then goes back to the BeginRequest event(line 245) to set portal settings again.

